A Maximum Entropy Approach to Collaborative Filtering in Dynamic, Sparse, High-Dimensional Domains
نویسندگان
چکیده
We develop a maximum entropy (maxent) approach to generating recommendations in the context of a user’s current navigation stream, suitable for environments where data is sparse, high-dimensional, and dynamic— conditions typical of many recommendation applications. We address sparsity and dimensionality reduction by first clustering items based on user access patterns so as to attempt to minimize the apriori probability that recommendations will cross cluster boundaries and then recommending only within clusters. We address the inherent dynamic nature of the problem by explicitly modeling the data as a time series; we show how this representational expressivity fits naturally into a maxent framework. We conduct experiments on data from ResearchIndex, a popular online repository of over 470,000 computer science documents. We show that our maxent formulation outperforms several competing algorithms in offline tests simulating the recommendation of documents to ResearchIndex users.
منابع مشابه
Maximum Entropy for Collaborative Filtering
Within the task of collaborative filtering two challenges for computing conditional probabilities exist. First, the amount of training data available is typically sparse with respect to the size of the domain. Thus, support for higher-order interactions is generally not present. Second, the variables that we are conditioning upon vary for each query. That is, users label different variables dur...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملA Total Ratio of Vegetation Index (TRVI) for Shrubs Sparse Cover Delineating in Open Woodland
Persian juniper and Pistachio are grown in low density in the rangelands of North-East of Iran. These rangelands are populated by evergreen conifers, which are widespread and present at low-density and sparse shrub of pistachio in Iran, that are not only environmentally but also genetically essential as seed sources for pistachio improvement in orchards. Rangelands offer excellent opportunities...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کامل